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Can Monte Carlo detect the absence of ordering in a 
model liquid crystal? 

by C. CHICCOLI and P. PASINI 
INFN Sez. di Bologna and CNAF, Via Mazzini 2, 40138 Bologna, Italy 

and C. ZANNONI 
Dipartimento di Chimica Fisica ed Inorganica, Universita’, Viale Risorgimento 4, 

401 36 Bologna, Italy 

(Received 8 September 1987; accepted 9 November 1987) 

We investigate the possibility of inferring the absence of an ordered phase using 
Monte Carlo simulations. The example we have chosen is that of a one dimensional 
Lebwohl-Lasher model, where an analytic solution is available. We argue that 
Monte Carlo can be of help even in this delicate sector notwithstanding the 
complications created by periodic boundary conditions. 

1. Introduction 
The Monte Carlo technique is often used to study phase transitions [1,2]. In 

particular it  has been applied to the investigation of orientational phase transitions 
in liquid crystal models [3-10]. Here the system goes from a low temperature phase 
with some sort of orientational order to a high temperature isotropic phase. The 
analysis has essentially a quantitative character when we already have strong indications 
that such an order-disorder transformation can take place. Thus, for example, in the 
three-dimensional Lebwohl-Lasher model [3-81 we expect a low temperature ordered 
phase. The Monte Carlo simulations aim to locate the transition and to determine the 
relevant observables together with their temperature variation. The situation is much 
more delicate for low dimensional systems [9, 101 or in general every time we try to 
use Monte Carlo computer simulations to infer the existence of an ordered phase. One 
problem, for example, is linked to the use of periodic boundary conditions and to the 
ordering that they induce [1,4,7]. Another is more intimately connected to the 
definition of the orientational order parameter as an invariant [4, 111 and to its 
intrinsically non-negative nature [8, 121. Thus we may ask first of all if Monte Carlo 
results are sufficiently accurate to pinpoint the absence of ordering. A somewhat 
similar kind of check was performed some years ago by Luckhurst and co-workers 
[13]. They examined a one-dimensional system of particles rotating in a plane (thus 
a d = 1, n = 2 system) and found a small heat capacity anomaly in good agreement 
with the analytical results of Freasier and Runnels [14]. This was then an important 
result, bringing confidence into the reliability of the Monte Carlo technique. How- 
ever, we now face situations where we should decide, based on Monte Carlo evidence, 
if an ordered system exists or if a phase transition takes place. The observation of a 
small peak in the heat capacity of a given finite size lattice is certainly not sufficient 
evidence in itself to prove or disprove the existence of a weak phase transition. One 
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useful approach, following the introduction of scaling ideas, is that of looking to the 
size dependence of various observables [l-2, 15-1 71. Another fruitful method seems 
the examination of the pair spatial correlation functions and of their distance depen- 
dence. For example, a power law decay of correlation is expected for two-dimensional 
phases with certain topological order [ 181 while an exponential decay should occur 
when no true ordering is present. It seems important, in view of the development of 
models for the more complex liquid crystal phases, to examine this point in some 
detail. In this paper we wish to investigate the ability of Monte Carlo simulations to 
help with this problem. The natural approach will be to look at  a simple system were 
analytical results exist. We shall treat the results as we would do for a simulation on 
an unknown system and see if the inductions we make are correct. 

2. Simulations and results 
The system we have chosen belong to the family of Lebwohl-Lasher models and 

is defined by the hamiltonian 

where it  is understood that the particles are on a regular one-dimensional lattice of 
length L with N = L sites, 8, measures the angle between the symmetry axes of the 
two molecules and E,, designates the strength of the nearest neighbours attractive 
interaction. 

We have studied three systems of increasing size: N = 10, 40, 100 and a few 
temperatures of a N = 1000 particles system. A standard Monte Carlo Metropolis 
method with periodic, i.e. circular, boundary conditions has been employed to 
generate equilibrium configurations. The simulation at  the lowest temperature studied 
for each size has been started from a completely aligned system. The simulations at 
the other temperatures have been run in cascade starting from an equilibrium con- 
figuration at the nearest lower temperature. The configuration of the system is given 
by the set of N orientations {a , ,  8,) so each particle has two orientational degrees of 
freedom. A new configuration is generated by randomly choosing a particle amongst 
those that we have not yet attempted to move during the current lattice sweep with 
a shuffling algorithm [8]. A new trial orientation of the chosen particle is then 
generated at random or, in most simulations, using the controlled increment tech- 
nique of Barker and Watts [19]. No significant difference between the two updating 
techniques has been found for this model. In any case we have checked that a rejection 
ratio not too far from 0.5 is achieved. In every simulation a minimum of 10 000 cycles 
(sets of N attempted moves) has been used for equilibration and thus rejected when 
calculating averages. Runs were typically between 16 000 and 22 000 production 
cycles. Any property of interest, A ,  is evaluated at every cycle. After a number of 
cycles m, (typically between 1000 and 2000) an average A J  is calculated. A further 
grand average is then computed as the weighted average over M such supposedly 
uncorrelated segments. The attendant weighted standard deviation from the average, 
o A ,  is also calculated and gives the error estimates. We have calculated for each 
simulation the energy as well as the second and the fourth rank order parameters. Pair 
correlation coefficients again of second and fourth rank have been calculated at 
selected temperatures for the L = 40 lattice. The heat capacity of the system has been 
evaluated by numerical differentiation of the internal energy { U,) resulting from the 
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Figure 1 .  The heat capacity, Cf, obtained from differentiation of the energy plotted against 
the dimensionless temperature, kT/&, for lattices of length L = 10 (squares), 40 (circles), 
100 (triangles). The continuous linc is the analytic result of Vuillermot and Romerio [20]. 

simulation. In figure 1 we report the heat capacity C,* calculated for the various size 
lattices as a function of the dimensionless temperature T* = kT/e. It is interesting to 
see that the Monte Carlo results for a linear dimension L = 10 differ from those of 
L = 40, but that these are in turn in good agreement with the L = 100 size. We have 
here a first important indication that further increases in size are not going to alter 
our conclusions. For the linear lattice we know the analytic results ofiVuillermot and 
Romerio [20,21], i.e. 

where D ( x )  is the Dawson function [22] and we also report them here as the con- 
tinuous line. It is comforting to notice the excellent agreement with the simulation 
results. 

To examine the question of the existence or not of a true ordered phase, we have 
then computed order parameters. The method we have used is the now-traditional one 
for periodic boundary conditions simulations [ 111 based on diagonalization of a 
suitably defined ordering matrix. Fourth rank order parameters have been computed 
with the algorithm introduced in [8]. In figure 2 we show our results for this second 
rank parameter, ( P 2 ) ; ~ ,  at various lattice sizes. ( P 4 ) ; ,  is not given since it presents a 
qualitatively similar trend, but the results are available from the authors. The order 
parameter starts from one at T* = 0 and tends to a value O ( L - ' )  at high tempera- 
tures. The size dependence in the intermediate temperature region is more interesting. 
We see that the ordering is still significant even in the largest lattice but that it is 
always smaller than that of its analogues with a smaller number of particles. The 
decrease with size affects not only the points on the high temperature side of the heat 
capacity anomaly, but those on the low temperature side as well. This is different from 
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Figure 2. The second rank order parameter (P2Ji obtained from the largest eigenvalue of the 
ordering matrix as recalled in the text plotted against the dimensionless temperature, 
kT/t;. Simulations for systems with L = 10 (squares), 40 (circles), 100 (triangles), 1000 
(hour glass), are shown with their estimated errors. 

the behaviour of three-dimensional and to some extent from that of two-dimensional 
[lo] lattices with the same potential (cf. equation ( I ) ) .  Thus these observables are not 
stable against an increase in size, in contrast to what we have seen in the heat capacity. 
We may have here an indication from our raw experimental observations that there 
would be no ordering of this kind in an infinite lattice. Interesting indications are 
offered from the two particle correlation coefficients GL(r).  

The two particle angular correlations Coefficients GL(v) describe a set of expansion 
coefficients of the rotationally invariant pair correlation function [4,8,9]. The calcu- 
lation is in general time consuming (although not so much in this case) and we have 
chosen to calculate the first two angular pair correlation coefficients C,(r) and G,(r) 
for about ten temperatures for the N = 40 and for a few temperatures for the 
N = 1000 system. We observe a very fast decay above the heat capacity anomaly 
which becomes somewhat slower as the temperature decreases. In figure 3 we show 
as an example G,(r )  for two temperatures well below the heat capacity anomaly. We 
also show the analytic results according to Vuillermot and Romerio [20], 

as the continuous lines. The agreement between theory and experiment is good for 
short distances and becomes progressively worse with increasing separations. At low 
temperatures this may be due to periodic boundary conditions effects leading to 
spurious increased correlations. However, at high temperatures the simulation data 
fall below the analytical result, which is harder to explain. We notice that the calcu- 
lation of the correlation functions is particularly error prone in a one-dimensional 
lattice. In fact C,(r) is calculated as a histogram and in a one-dimensional lattice only 
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Figure 3. The second rank pair correlation coefficient C,(r)  plotted against the distance Y ,  in 
lattice units. The results are for the L = 40 (squares) and L = 1000 (circles) lattices at  
temperatures (a) T* = 0.02 and (b) T* = 0.12. The continuous curves are from Vuillermot 
and Romerio [20]. 

buckets at integer distances will be populated. This means that G,,(r) is defined on a 
smaller number of points than for higher-dimensional lattices. Moreover the statistics 
on these points will be relatively poor since the coordination number will be just two, 
independent of the separation. We see, however, that for N = 1000 the calculation 
has improved enough to agree well with the analytic one for this separation range. In 
any case we shall ignore the analytic results for now, since they would not be available 
under normal circumstances. We shall then try to obtain some indications by fitting 
a certain decay law to G2(r). In practice we perform a non-linear least square fitting 
of all the second rank correlation coefficients available to either an exponential decay 
to a plateau 

C2(r )  = (1 - A,)exp(-k,r) + A , ,  (4) 

or to a power law decay to zero 

G2(r) = A,,/rkp. ( 5 )  

The non-linear least square fit is performed on raw data up to a certain cut-off length 
L,. We have found that the exponential law gives a sensibly better fit at the higher 
temperatures, but more importantly that the exponential fit is always better even 
below T,, so that we have no indication of long short-range order. 

3. Discussion and conclusions 
For this one-dimensional lattice molecular field theory is completely wrong, since 

it predicts a first order phase transition at a temperature T:, z 0.22 (cf. discussion 
in [9]). This temperature, which is just the well-known value for the cubic lattice scaled 
by the reduced number of nearest neighbours is by coincidence similar to the tempera- 
ture corresponding to the heat capacity anomaly. We have found that studying the 
size dependence of the results and especially of the order parameters is essential in 
correctly assessing the lack of existence of a true transition. In this respect we also 
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find that analysing the pair correlation function decay is particularly helpful in 
indicating the absence of true ordered phase. We conclude that Monte Carlo simu- 
lations indicate correctly the absence of a transition as expected from the analytic 
results [20,21]. 

The simulations were run on a cluster of two DEC VAX 11-780 minicomputers 
at Dipartimento Fisica-INFN, Bologna, and on a VAX 11-780 at Dipartimento 
Chimica Fisica. C.Z. thanks C.N.R. and Min. P.I. for grants towards the cost and 
maintenance of the latter system. 
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